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Abstract: This paper discusses the results of a three-year mixed 

methods study into the effectiveness of a mathematics education unit. 

This was written for both pre-service primary education students and 

re-training in-service teachers, to prepare them for the teaching of pre-

algebra and early algebra. The unit was taught rom 2013 to 2015 

inclusively in a School of Education setting of a university in an 

Australian capital city. Focusing on the Number and Algebra strand in 

the Australian Curriculum, its purpose was to better prepare some 

novice teachers through modelling a more coherent approach to 

mathematics teaching. The unit’s genesis lies in the author’s belief that 

many mathematics teachers conduct their classes in isolated “pockets” 

of instruction that are not sufficiently informed by a broader, connected 

understanding of the mathematics. The unit was also prepared as a 

contribution to the recent call by the Australian Association of 

Mathematics Teachers for more targeted initiatives to combat the 

decrease of STEM skills in our schools (AAMT, 2014). Results from the 

analysis of this study suggest that there might be much to be gained 

from this new approach.  

 

 

Introduction 

We need a well-designed and coherent system of support for quality teaching of 

mathematics that includes quality pre-service, good mentoring into the profession, early 

career support, ongoing support, targeted initiatives that address particular issues, and 

mature professionals “giving back” to the profession [bolding added].  

Teacher Education Ministerial Advisory Group Consultation Submission (AAMT, 2014). 

 

I think what we learned in the unit is the groundwork, and that ties everything together. I 

think it’s more tied in than what I first thought. Everything links in maths. 

Fourth year primary education teacher, respondent in the research project, 2014. 
 

The 2013-2015 reflective project described here employed both quantitative and 

qualitative research strategies to evaluate the effectiveness of a new mathematics education unit 

provided at the university at which the author teaches. This was presented both as an elective unit 

for able primary fourth-year degree students, in all three years, and in 2015 as part of a State-

government-funded course for re-training in-service teachers. The unit saw small but consistent 

enrolments in both on-campus and online versions over this time, and is founded on an original 

theoretical model for teaching proposed by the author. This model aims to facilitate more 



Australian Journal of Teacher Education 

 Vol 41, 6, June 2016  123 

effective teaching of all three Australian Curriculum strands in the transition years (Years 6 to 8) 

of mathematics classrooms. The model will be briefly described in the section headed “The 

context”.  

The unit is strongly linked at all times to the Number and Algebra strand in the current 

Australian Curriculum for mathematics, and is aimed at helping pre-service teachers and teachers 

to more successfully navigate the Curriculum. The workshops and materials present structured 

conceptual representations of the content in the strand over time, specifically linking the evolution 

of number concepts with early algebraic thinking. The pre-service and in-service teachers engage 

in a carefully scaffolded experience that invites them to conceptualise the mathematics strand as a 

coherent system of thought, moving in a logical way from the Foundation Year to Year 10. The 

unit also explores and models mathematics curriculum school leadership skills, and incorporates 

assessment items that ask them to demonstrate these by cohering and presenting their 

understanding to others in various ways.  

Mixed-methods research and reflection, based on the researcher/instructor/writer’s 

anecdotal and recorded observation of the students’ experiences as well as the collection of actual 

data, was carried out over the three years. Figure 1 illustrates the way in which the study was 

conceptualized. Through interrogating the value for pre-service and in-service teachers of a more 

organised, metacognitive consideration of evolving mathematical concepts, the researcher hopes 

that this will then ultimately engender deeper and more connected learning experiences for 

students in primary and secondary mathematics classrooms.  

It needs to be stated that the focus of this particular pilot study was not to interrogate 

closely the minutiae of how any positive changes may have been brought about, but rather to trial 

some materials and approaches, and to enquire into any overall reported effectiveness of the 

associated new strategies.  The following research questions were addressed, and will be 

discussed in this paper:  

Can a mathematics education unit based on careful mapping materials prepare novice teachers to…  

1. develop some metacognitive understanding of children’s evolution of mathematical concepts?  

2. more clearly relate basic number concepts to early algebraic thinking? 

3. develop confidence and self-efficacy as teachers of mathematics? 

Some examples of the unit materials are also provided, so that both the research findings 

and student commentary may be more clearly contextualised for the reader. This is then followed 

by further reflection on the pre-service teachers’ beliefs about mathematics, and their self-

efficacy and confidence concerning mathematics teaching at the conclusion of the unit work. 

 
 

Literature Review 
The Tension between Relational and Instructional Learning in Mathematics Classrooms: Its Impact on Pre-

Service and Novice Teachers of Mathematics 

 

Education researchers have in recent years highlighted the tendency of many government 

bodies to ask for improved teacher “training”, with much less attention to the deeper cognitive 

and relational understanding that is required of the teaching profession (Darling-Hammond & 

Richardson, 2009; McNally & Blake, 2010; Swierczek, 2010). This is particularly true in the 

arena of mathematics education in Australia, where there are increasing calls for more strategic 

or “targeted” approaches to the preparation of classroom-ready and effective mathematics 

teachers (AAMT, 2014; Office of the Chief Scientist, 2013; Teacher Education Ministerial 

Advisory Group (TEMAG), 2014). The growing shortage of skilled mathematics teachers across 
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Australia and in many parts of the western world is well documented and has been at a crisis 

level for at least fifteen years (Guarino, Santibanez, & Daley, 2006; Ormond, 2011). At the same 

time, concern about the numeracy skills and basic mathematical knowledge of pre-service 

teachers’ training in primary and lower secondary mathematics continues to be articulated, and 

early career teachers’ understandings and confidence continue to be the subject of current 

concern (Livy & Herbert, 2014; Hurst, 2014).  

Rakes, Valentine, McGatha and Ronau (2010) argue, as many commentators before them, 

for the importance of relational teaching and learning in mathematics. At the same time they 

lament the intractability of many mathematics teachers in persisting with their preference for 

instrumental mathematics and algorithmic routines, over more conceptually linked approaches to 

the understanding of mathematics. 

The persistence of a procedural emphasis in traditional mathematics pedagogy … 

suggests that although a great deal of evidence supports the importance of teaching mathematics 

conceptually, the information from that body of research has not yet influenced the teaching 

profession enough. (p. 391) 

Rakes et al. (2010) also remind us that, as long ago as 1976, Richard Skemp 

 … identified several benefits of building connections among ideas that may explain its 

effectiveness on improving student achievement: (a) improved ability to adapt to unfamiliar 

situations, (b) reduced need to memorise rules and heuristics, (c) enhanced student intrinsic 

motivation to learn mathematics, and (d) increased stimulation of student growth into independent, 

lifelong learners. 

Yet the reality is that “operational” or “relational” learning and teaching (Heibert & Lefevre, 

1986; Sfard, 1991, 2008; Skemp, 1986) has always been far more challenging for any teacher to 

consistently enact in a mathematics classroom than “instructional” teaching. The former type of 

learning and teaching is far more dependent upon the flexible use of inquiry-based strategies and 

contextualised conversations with students; and upon a creative attention by teachers to multiple 

representations that cover both the left-brain verbal/symbolic and right-brain 

visual/spatial/kinesthetic aspects of a complex mathematical idea (Davis, 2012; O’Halloran, 2005; 

Skemp, 1986; Sousa, 2008; Ormond, 2012a; Woolner, 2004). Despite the sustained demand by 

teacher educators for more student-centred approaches in the teaching of classroom mathematics, the 

majority of mathematics teachers appear to persist much of the time with more teacher-centred ones, 

and also often with an over-reliance on textbook exercises and algorithmic procedures. 

Pre-service teachers are themselves the products of these practices in their own schooling, 

and as such are very likely to replicate their experiences, without some intervention and thought at 

the teacher preparation level. Further, this paper argues that the lack of appropriate relational 

learning in many mathematics pedagogy classrooms in teacher education courses is a strong 

contributing factor to poor teaching in primary schools, and in some cases, secondary schools. 
 

 

Strategies for Creating Classroom-Ready Mathematics Teachers with Stronger PCK: Visualising the Structure of 

a Mathematics Curriculum 

 

Current and recent commentators stress the need for students of all school ages to see the 

connections and relationships between mathematical ideas and their representations (Kilpatrick, 

2010; Ormond, 2012a; Vogel, 2008); and it is argued here that this is just as true for novice 

mathematics teachers as it is for students in school classrooms. Further, the researcher believes that 

there is a great advantage in mapping and revealing mathematical structures for pre-service teachers.  
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Warren (2003) defines knowledge of mathematical structure as “knowledge of mathematical 

objects and the relationship between the objects and the properties of those objects [italics added]”. 

Being organised about mathematics is not a new idea: in 1991, Briginshaw advocated having a clear 

conceptual construction in the presentation of any mathematics curriculum or syllabus, claiming that 

“mathematics is both multi-faceted and multi-layered”. He added that “in order to teach it effectively 

it would help if those facets and layers were to be differentiated and clearly displayed” (p. 76). 

Structure is key in mathematics, whether one considers it from a didactic or a social 

constructivist perspective. Bauersfeld (1995) looked at mathematical structure and its concept 

development as a “social practice”, and Vygotsky’s phrase “social constructivism” (1962) relies on 

“scaffolding” up through a hierarchy of learning. The current Australian Curriculum for 

mathematics has now provided Briginshaw’s “differentiation and display”, and it does this well: it 

has offered teachers a logical and carefully mapped structural framework of mathematics content. 

Yet a truly practical and useful curriculum structure needs also to ensure that its connections and 

links are visible to the user, thus enabling for teachers something more like Warren’s (2003) 

“knowledge of structure”. Kilpatrick (2010), who also explains the need for cohesion and 

organisation in presenting a clear curriculum for teachers, emphasises how important it is to 

synthesise the theoretical and the practical, and claims that “mathematics educators need to bring 

research and practice together through an organised system of knowledge that will enable [teachers] 

to see beyond the specifics of each and explain how they can work together”. 

The specifics of the mathematics need to work together: a huge additional challenge for the 

writers of a curriculum document. Other analysts have also questioned just how successfully the 

Curriculum sometimes presents a truly comprehensive and connected sense of mathematics. 

Mulligan, Kavanagh and Keanan-Brown (2012) express this in their final remarks of a paper that 

critically investigates the Number and Algebra strand: 

In our discussion we have provided an outline of the Australian Curriculum: Mathematics 

Number and Algebra content strand, which does to some extent present a connected view of 

mathematics, by linking number with pattern for algebraic thinking. On the surface this provides a 

positive sense of expectation about the Number and Algebra strand, with the opportunity for greater 

conceptual and connected knowledge and the development of teaching practices that focus on 

relational thinking. The definitions of the Proficiency strands (understanding, fluency, problem 

solving and reasoning) indicate a curriculum that is concerned about mathematics as patterns, 

relationships and generalisations, and not just facts, skills and rules. However, the structure and 

depth of the content, as presented through the descriptors, appear to lack the coherence and 

connectedness that the document promises, which results in some concerns about the 

implementation and effectiveness of the strand overall [bolding added]. (p.65) 

In other words, for everyday classroom teachers, the “how” of teaching the mathematics 

using the Australian Curriculum resource still does not adequately support the “what” of 

teaching it. The links between the ideas still need to be made by teachers: an essential, but by no 

means automatic, mathematical process that requires patience and practice.  

Experienced mathematics teachers often assume that novice teachers have some solid 

understanding of an overall framework or paradigm for teaching classroom mathematics, but this 

paper argues that new teachers often need quite overt assistance in both developing and 

unearthing their Pedagogical Content Knowledge (PCK). Sound PCK employs a theoretical 

understanding of mathematical ideas together with effective classroom practice (Charalambous, 

Hill & Mitchell, 2012; Davis, 2012; Hill, Rowan & Ball, 2005; Shulman, 1986; Sullivan, 2011). 

Ball, Thames and Phelps (2008) state that: 
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Shulman and his colleagues defined a perspective [of knowledge] that highlighted the 

content-intensive nature of teaching. However they also sought to specify the ways in which the 

content knowledge for teaching is distinct from disciplinary content knowledge. This had important 

implications for informing an emerging argument that teaching is professional work with its own 

unique professional knowledge base. (p.392) 

Baumert and his research team (2010) concluded that teachers’ content knowledge of 

mathematics “remains inert in the classroom unless accompanied by a rich repertoire of 

mathematical knowledge and skills relating directly to the curriculum, instruction, and student 

learning” (p. 139). Chick, Baker, Pham and Cheng (2006) coin the phrase “clearly PCK” to portray 

this blending of knowledges for productive teaching, and Roche and Clarke (2011) discuss the 

confident teacher’s ability to “select”, “interpret”, “demand” and “adapt”. 

Ball et al. (2008) supports these commentators, saying: 

… Shulman argued that knowing a subject for teaching requires more than knowing its facts 

and concepts. Teachers must also understand the organizing principles and structures and rules for 

establishing what is legitimate to do and say in the field [italics added]. The teacher need not only 

understand that something is so; the teacher must further understand why it is so. … Moreover, we 

expect the teacher to understand why a particular topic is particularly central to a discipline 

whereas another may be somewhat peripheral. (p. 391) 

The phrase connectionist teaching and learning, coined by Askew, Brown, Rhodes, 

Johnson, and Wiliam in their 1997 study, is very relevant to this argument, stressing as it does 

the importance of an intelligent balance between transmission and discovery approaches to 

classroom teaching and learning (Lee, 2014). Teacher instruction and student experimentation 

each have their parts to play in any dynamic mathematics learning environment, including those 

designed for novice teachers. It is argued in this paper that a synergy of both quite overtly 

organised conceptual mapping, with practical inquiry into real classroom contexts and concept-

building activities, is essential when preparing pre-service teachers to teach mathematics well.  

The research study also included some exploration as to just what the participants in the unit 

felt about mathematics itself, and whether or not some evidence of a shift of attitude could be 

detected. Teacher beliefs and attitudes are notoriously difficult to influence, as the research has 

shown (Aguirre, 2009; Beswick, 2006; Goldin, Rosken & Torner, 2009; Grootenboer, 2008; Lee, 

Ladele & Ormond, 2013; Rakes et al., 2010). Yet in this paper it is also argued that a clearer 

charting of a logical curriculum and its connections and relationships may do more than just provide 

practical support for novice teachers. It may also result in some positive effects in regard to their 

beliefs about mathematics and mathematics teaching. This will be explored further in a later section 

of the paper. 
 

 
Algebraic Thinking in the Classroom: Teachers’ Understanding of Students’ Needs across the Years 

 

The need for the practice of early algebraic thinking in school classrooms – even as early 

as Years 2 or 3 – and its importance to all learning of mathematics has attracted a good deal of 

commentary over the past decade (Kaput, 2008; Mason, 2006; Van Dooren, Vershcaffel & 

Onghena, 2002). Van Dooren et al. (2002) describe early algebraic thinking skills as 

“symbolising, generalising, reasoning about relationships, [and] representing unknowns and even 

operating on them”. Radford (2001) said that teachers of mathematics “need to deepen [their] 

own understanding of the nature of algebraic thinking and the way it relates to generalisation”. 

Warren and Cooper (2009) have more recently claimed “that the power of mathematics lies in 
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the intertwining of algebraic and arithmetic thinking, each enhancing the other as students 

become numerate.” Moreover, intrinsic to these processes is the teacher’s informed use of 

different but equivalent mathematical representations when presenting algebraic concepts. This 

is something that early career teachers need to be encouraged and reminded to do. As Davis 

(2012) says, enriching further some of Sfard’s (2008) perspectives: 

The subtleties of the capacity to move among interpretations tend to be difficult for expert 

practitioners to appreciate. In particular, teachers and other expert knowers are often unable to 

differentiate among realizations [representations] which novices are unable to reconcile. (p.4) 

Freudenthal (1983) similarly referred to the “automatisms” of practising mathematicians 

that so often need to be unravelled and reconfigured for students in a mathematics learning 

setting. This is no doubt true for many pre-service mathematics teachers also. 

There is also a large bank of research concerning the natural and often quite 

understandable confusions that occur for lower secondary students when beginning formal 

algebra. These are often based on inappropriate mental models for symbols and equations 

(Booth, 1984; Clement, 1982; Kaput, 2008; Kieran, 1989; Knuth, Stephens, McNeil & Alibali, 

2006; MacGregor, 1998; Warren & Cooper, 2009). For example, it is known that young students 

are very reluctant to move forwards from the implied idea that the equal sign always and only 

means “give the answer” (Ely & Adams, 2012; Kieran, 1981, 1989; Ladele, 2013; MacGregor 

and Stacey, 1997; Ormond, 2012a). Also, students often misinterpret letter variables as names 

for objects, and so have difficulty accepting the idea of their variability or their relationship with 

other quantities (Arzarello, 1998; Herscovics, 1989; MacGregor & Stacey, 1997). 

Despite over 30 years of extensive research showing just how essential the successful 

establishment of these concepts is to students’ later success in all areas of mathematics, the early 

connections between number skills and algebraic thinking are not usually thoroughly 

interrogated at the primary level of teacher education preparation. The likely algebra 

misconceptions of the transition years of schooling are also often completely unknown to upper 

primary mathematics teachers. These two significant problems are addressed in Module 1 and 

Module 2 of the unit described in this paper. The way in which the author has attempted to 

redress these shortfalls in the PCK of many novice teachers is also later described.  
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Method 

 

 
Figure 1. The conceptual framework for the study 

 

Both qualitative and quantitative approaches were used to collect, reflect upon and 

interpret gathered data. A total of 33 respondents were involved in the mixed methods research 

study over the years 2013, 2014 and 2015 (see Tab.1). These comprised 22 pre-service primary 

education students who participated in a mathematics specialisation elective unit, and who had 

maintained an HD average in their mathematics education units in earlier years; and 11 primary 

and secondary teachers re-training to teach lower secondary mathematics (and sponsored by state 

government scholarships in a graduate certificate program written by the researcher). Twenty-

seven respondents completed the two pre- and post-test surveys, and 14 students agreed to be 

interviewed after completing the unit. Eight1 of these 33 responded to both pre- and post-test 

surveys and also completed case study interviews.  

Simons (2009) describes a case study as an “in-depth exploration from multiple 

perspectives of the complexity and uniqueness of a particular project, policy, institution, 

programme or system in a ‘real life’ context”, and Yin (2012) claims that it “can be used to 

document and analyse the outcomes of interventions”. Silverman (2011) talks about building a 

full picture of a situation where people are functioning in a comfortable setting, such as in 

response to targeted questions in an informal interview. In this study semi-structured interviews 

and discussions with students were employed, with a set of questions asked (see Appendix Tab. 

1) and further commentary invited. The interviews were conducted, audiotaped and transcribed 

by a disinterested party, by phone or by face-to-face interviews on campus. These transcripts 

were then later interrogated by the researcher, who looked for key words and phrases and 

                                                        
1 Case study Students 1 to 7, and Student 14. 
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evidence of certain dispositions that connected logically with the three research questions. A 

second disinterested research assistant entered the quantitative data2 from the two surveys into 

the statistics program SPSS, also for later analysis by the researcher.  

The undergraduate students as part of their degree had completed the unit concerning pre-

algebra and algebra up to about Year 8 in school level concepts; the re-training primary and 

secondary teachers had completed what was essentially the same unit, but with the addition of 

four more three-hour workshops concerning the learning and teaching of algebra in Years 9 and 

10. The pre-test surveys in each case were administered to the students before the unit began, and 

the post-test surveys were administered at its completion. All participants were assured in writing 

(in line with the University’s ethics policy) that collected data of all kinds would only be 

examined for the first time after their academic results for the unit had been finalized and 

submitted. 

 

Instruments and respondents 
Fourth year primary maths 

education students with an 

HD average, 2013-2015 

Re-training primary 

teachers, 2015 

Re-training secondary 

teachers (non-

mathematics), 2015 
Totals 

Pre- and post-test surveys (only) 15 4 - 19 

Case studies only  - 5 1 6 

Both surveys and case studies 7 1 - 8 

Totals 22 10 1 33 

Table 1.  Breakdown of the students’ participation: in pre- and post-test surveys only, in case study 

interviews only, or in both (n = 33). 
 

The research methodology was triangulated by using collection and analysis of both 

qualitative data (the case studies) and quantitative data (the survey questionnaires), so as to 

ensure the broadest possible perspective (Bergman, 2010; Yin, 2009) in the interrogation of the 

three research questions described in the introduction. The surveys essentially consisted of 

requests for percentage breakdowns in students’ beliefs about the meaning and teaching of 

mathematics; and Likert-scaled responses to attitudinal and belief questions concerning 

mathematical skills and confidence, before and after the teaching of the unit. The former used a 

statistically validated questionnaire concerning the respondents’ beliefs about mathematics and 

its teaching and learning (Swan, 2005). The latter employed questions designed by the researcher 

(see Tabs. 2 to 9). These were not statistically validated as their purpose was to provide early 

indications of possible success in the new teaching approaches, rather than inferentially test for 

change. In the case of the quantitative data collected from the pre- and post-study surveys, the 

researcher used descriptive statistics, such as comparative column charts and pie graphs, and 

numerical comparison of the means of the rank responses between pre- and post-test surveys. 

Because the sample was very small, inferential testing was largely inappropriate, but it was felt 

by the researcher that a means-comparison interpretation of ordinal data provided an appropriate 

method for detecting or observing any meaningful changes from pre- to post-test. A Student 

Paired t-test was also carried out on the numerical percentage scores obtained from the Swan 

mathematics questionnaire. The purpose of the research was always intended more as reflection 

                                                        
2 The number of respondents contributing to this quantitative data decreased on one or two occasions from 27 to 26 as there were 

some incomplete responses from one participant in one of the surveys. 
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than as inferential analysis, in preparation for further curriculum offerings of a similar nature 

should any success appear to have occurred within the three small cohorts. 

 

 

The Context 
The ACCR Theoretical Model 

 

The theoretical model from which the unit materials derive (named by the author as the 

Australian Curriculum Conceptual Rubric (ACCR)) is only briefly described here. It is important 

to provide this as a backdrop to the discussion, however, as the model frames all of the thinking 

behind both the conceptualisation and practical realisation of the unit.  

Students are invited from the first workshop to think about all mathematics teaching 

(including the other two strands3 also) from the perspective of four big questions. These 

overarching and fundamental questions are also the actual origin of the four conceptual areas 

referred to throughout the paper. Moreover, it is made clear to students at the outset that the 

unit’s underlying theoretical model is intended to clarify and enrich the mandated Curriculum, 

and in no way to supplant it.  
The ACCR is designed to direct pre-service and in-service mathematics teachers to 

appropriate parts of the Australian Curriculum, and to then help them to ask the most effective 

classroom questions of their pupils, and themselves. These questions, coded by four colours that are 

used consistently in the unit documentation, are: 

 What patterns are there in this maths content? 

 What sort of fluency do students need in this maths? 

 What relationships and connections can be seen in this maths? 

 What practical relevance does this maths have to our everyday lives? 

The questions involve both big background ideas, and the use of some didactical delivery 

and practice of skills. Two of the questions are more about the structure of mathematics and two 

are more about how mathematics is used in an everyday, and classroom, way.  

These notions may again be related back to comments made by Mulligan et al. (2012) 

concerning the strand of Number and Algebra, when they claim that “structure and depth of content” 

(Sfard’s structural learning) are covered satisfactorily in the Curriculum, but that “coherence and 

connectedness” (operational learning) often are not. Structural teaching and learning is of course 

also important, and this can be characterized much of the time by a more transmission mode of 

teaching (Askew et al., 1997). It also probably resonates best with the two ACCR conceptual areas4 

(on this occasion using the same colour coding but for category names instead of questions), Attain 

fluency with the facts and Use mathematics in the real world. 

Operational learning and teaching is probably more often characterized by the other two 

ACCR conceptual areas Look for patterns and Use the connecting relationships to reason, and to 

understand the content. Operational or relational learning is far more challenging for a teacher to 

consistently enact or facilitate in a mathematics classroom. It is also, and has always been, a 

                                                        
3 Indeed, a second unit focusing on geometry has recently been written using the same theoretical framework. 
4 All of the ACCR conceptual areas prompt teachers to ask the important questions that can make the mathematics content come alive in a 

classroom. Other general ACCR documents (not included in the paper) categorise each Australian Curriculum content description 

according to its potential for illuminating a particular area. This mapping has been carried out in the document across three school-age 

stages from Years Foundation to 10. It is important to note that because mathematics is so complex and inter-connected, the Australian 

Curriculum content description codes will often appear under two, three or even four of the conceptual area headings, and does so for all 

three strands. This is purposeful, as it reflects the need to attend to the different aspects or approaches (the areas of the concepts) invited 

by the content description. 



Australian Journal of Teacher Education 

 Vol 41, 6, June 2016  131 

dominant theme of discussion in mathematics education. This type of learning and teaching is far 

more dependent on discovery or inquiry-based strategies and contextualised conversation 

(Vygotsky, 1962); the use of appropriate analogy and metaphor (Lakoff & Nunez, 2000; Ormond, 

2012a); attention to multiple or “multi-modal” representations that cover the left-brain 

verbal/symbolic and right brain visual/spatial/kinesthetic aspects of a complex mathematical idea 

(O’Halloran, 2005; Ormond, 2012a; Skemp, 1986; Sousa, 2008); and the “semiotic resources” of 

language, manipulatives, spontaneous drawings and gesture (Mildenhall, 2013; Radford, 2009; 

Sfard, 2008).  

These ideas, where relevant to the arguments, will be explored further in later sections of the 

paper. 
 

 
The Documents: Scaffolding the Curriculum Structure  

 

Some examples of unit documentation are now provided for reader so as to better frame an 

understanding of the content of the paper. Figures 2 to 6 are snapshots5 of some of the more widely 

used documents and materials in the unit. The earlier documents illustrate and exemplify through 

various kinds of mapping the scope and sequence of the Number and Algebra strand’s content, and 

others summarise the key pedagogical ideas of primary and secondary school that need to be 

addressed in relation to these (also see Figs. 7, 8 and 9 later in the paper). Consistent reference is also 

made throughout to the multi-modal representations needed in teaching mathematics, as discussed in 

the review of the literature. All documents were also provided to students electronically, to 

accompany PowerPoint lecture/workshops, readings and videoed vignettes of teaching, but the ones 

seen in Figures 2 and 3 (and in the Appendix) were also distributed as coloured hard copy handouts at 

the beginning of the unit. 

An important objective in the unit is to offer the students two kinds of directional 

perspectives concerning the Curriculum for the strand. Figure 1 attempts to represent these 

distinctions visually. The first perspective could be described as a horizontal one in that it teases 

out, across each Year level, the connections in the mathematics, which are seen in terms of the 

ACCR conceptual areas (colour-coded as described above). Figures 2, 3 and 7 all exemplify this 

horizontal perspective, seen wherever colours are used as coding.  

The second vertical perspective traces the sequential evolution of the concepts (within 

each conceptual area) from Foundation Year to the lower secondary years, and this is seen in 

Figure 3 in a document that provides a quick and cohesive snapshot of the Australian Curriculum 

content through the years. This vertical scoping mimics the web-based presentation of the 

Curriculum itself (with the exception that the site moves downwards and not upwards), and this 

is supported by regular comparative exercises that interrogate the development of ideas in similar 

activities over the years. These are derived from Mathletics© (http://www.mathletics.com.au) 

worksheets, First Steps in Number exemplars, original pre-algebra and algebra tasks, and other 

resources. The bank of such scope and sequencing exemplars has grown considerably in size 

since 2013, as students have asked for more and more practical illustrations of the ideas. 

 

                                                        
5 Note that the documents presented as figures in the paper are sometimes not as legible as could be desired, as they are very 

detailed and are in fact often provided in an A3 size to students. However, clearer versions are available to readers, upon 

request and in some circumstances. 

http://www.mathletics.com.au/
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Figure 2. The first Scope and Sequence document for the Australian Curriculum Number and Algebra (Years 

Foundation to 5). This was handed out in hard copy to all students at the beginning of the unit. Two more 

such scope and sequence documents were prepared for Years 6 and 7, and Years 7 to 9, and they are 

formatted in exactly this way also. (This figure provides a slightly clearer image for helping the reader to 

understand the reference to “Document 2” in Fig. 5.) 
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Figure 3. A section of the Australian Curriculum Number and Algebra Content Summary document (referred 

to as the “step-ladder diagram”). This has since been mapped in its entirety from Foundation to Year 10A 

inclusive.  
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Figure 4. An example of a PowerPoint slide from the introductory materials: showing the horizontal and 

vertical perspectives for thinking about the mathematics, to be used as tools for developing stronger 

pedagogical content knowledge. 
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Figure 5. An early except from the “Weekly Warm-Ups” documentation provided for the four-unit graduate 

certificate course, of which this unit was a part. (For a clearer image of the second diagram, see the 

Appendix.) 
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It was stated earlier that the underlying theoretical model (the ACCR) is not in any way 

intended to overlay yet more structure onto the Curriculum, but to instead provide a deeper 

perspective as to its actual teaching in a classroom. Figure 6 again provides an excerpt from 

some early unit documentation. 

 

 

The ACCR has been prepared for your use as part of the unit resource documents, and will be referred to 

quite often in the unit. It is important to note at the outset that it is provided as a set of support 

documents for the Australian Curriculum (AC) for mathematics, and it is not intended in any way to 

replace it or re-interpret the AC in a different way. Recent feedback from teachers has strongly 

indicated that they often struggle with using the AC to plan meaningful and cohesive lessons for their 

students. The ACCR is the result of careful research, and is an "in-house" resource to be used whenever 

useful to assist teachers in their use of the AC.  

Where your unit assessments mention the need to reference the ACCR, they intend this in a relatively 

simple way: all of the course units are based on the same understanding, that effective teaching of 

classroom mathematics occurs through four kinds of "lenses", called the four "conceptual areas". These 

are: looking for patterns, fluency and recall of maths facts, everyday, real life numeracy, and deeper 

mathematical relationships. Wherever these four colours appear in the documentation, this is all it means. 

These conceptual aspects of what we do in a classroom with students and mathematics all involve the AC 

content, and all involve the AC proficiency strands. The conceptual areas are "overarching" aspects of 

mathematics that are the foundation of the AC, or indeed of any other mathematics curriculum. 
 

Figure 6. The four big questions for the teaching of all classroom mathematics; and an excerpt from the 

introduction to the unit. 
 

The ACCR is intended to supplement for teachers some of the “coherence and 

connectedness” that Mulligan et al. (2012, p. 65) find lacking for the Number and Algebra 

strand. These four distinct but nevertheless linked aspects of the theoretical model, the 

conceptual areas, are used in the unit to evoke or suggest the different possible teaching 

emphases inherent in an Australian Curriculum content description. The students are encouraged 

to reflect on the fact that the richer content descriptions – that is, those whose potential for 

interesting mathematical work is more evident – often connect all at once with patterning, 

fluency6and recall, and everyday numeracy7, and they should also say something about 

                                                        
6 The Fluency conceptual area across all three AC strands in the whole ACCR model (not described in detail in this paper) has much in 

common, of course, with the Australian Curriculum proficiency strand of Fluency. However, it is intended to be a little broader, and also 

to be intimately linked with the other conceptual areas . While also related to algorithmic skills and the automatic recall of procedures, it 

is conceived in the model to also involve operational confidence, ready recognition of real contexts and of mathematical structures 

(patterns), and an evolving, developmental understanding of the connections in the mathematics. The acquisition into deep memory of 

concepts at the level of the conceptual area Equivalence and relationships in mathematics is crucial to the development of the next level 

of Fluency in the following year. (See Appendix Fig. 2.) 
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mathematical relationships of some kind. An introductory audio-presentation that foregrounds 

this theoretical model includes a slide illustrating the idea of these two directional perspectives 

(see Fig. 4).  

 

 

The Research Questions, the Findings, and Some Early Implications 

 

This section is organised around the three research questions for the study. In each case, both 

qualitative and quantitative findings will be used as prompts for some discussion and reflection. For 

the sake of clarity, this discussion is therefore arranged in three associated sub-sections that also 

briefly consider the implications of the findings.  
 

Research Question 1: Can a mathematics education unit based on careful mapping materials 

prepare novice teachers to develop some metacognitive understanding of children’s evolution of 

mathematical concepts? 
 

This first question sits at the very heart of the research investigation. The unit’s own 

theoretical model8, discussed in the last section, is based on the premise of the students involved 

gaining a newly connected and refreshed understanding of the structure of the mathematics in the 

strand. Thus the question involves both pedagogical content knowledge (PCK) and subject content 

knowledge of the mathematics (SCK) (Hurrell, 2013; Ma, 1999; Shulman, 1986). The research 

question also relates to Davis’s (2012) concept of teachers’ emergent understanding. 

Both online and hard copy resources, as exemplified by Figures 1 to 9, were consistently 

successful with the students. Evidence of this can be seen in Table 2, where the mean rank approval 

ratings derived from the second survey lay between 4 (agree) and 5 (strongly agree).  

 
 

Post-test survey questions  

(strongly disagree (1), disagree (2), unsure 

(3), agree (4), strongly agree (5)) 

Mean rank on 

Likert scale 

from 1 to 5 

Standard 

deviation 

The hard copy materials offered by the unit were clearly laid 

out and easy to understand.  
4.11 0.847 

The on-line resources offered by the unit were clearly presented 

and easy to understand.  
4.26 0.712 

Table 2.  Means of ranks of responses to two questions on the post-test survey (n = 27). 

 

The many affirmative comments made by students in the final case studies also support this 

claim. Just some of these are included here. 

 

Student 7 (2014): [The lecturer] provided us with … [a document: see Fig. 3] … 

starting from Foundation and all the way up to Year 7 or 8.  It had the Curriculum 

broken down … and that really helped, because with a spread out sheet you could 

look at and compare each year and look at the evolution or the increasing difficulty of 

                                                                                                                                                                                   
7 The “Everyday Numeracy” conceptual area is included where relevant in the unit documentation, but is not featured specifically as part 

of the theoretical model for this particular strand, as discussed here. 
8 That is, as in the pedagogy, or andragogy, of the adult teaching student learners themselves, and not be confused with that for 

the children they will be teaching. 
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each Curriculum content description from each year, to really compare them. So that 

was one document that I refer to a lot.  

Student 6 (2014):  I loved these documents.  I am filing them and keeping them with 

me.  It was great to see how they summarised the content throughout the unit.  It 

provided the information required for you, and the different learning abilities, the 

progression throughout the year levels - and it was very clear to read and understand.  

I will definitely be using these as a point of reference for my future teaching career.   

Student 8 (2015): They were amazing, the most fabulous documents ever. Just so 

simple to follow, easy to read, quick to access, comprehensive links to Number and 

Algebra and the Australian Curriculum.  She summarised it so I could go, yeah, I can 

incorporate this, this and this, in this part of my maths.   

Some of the students’ own case study interview comments can also be used quite 

helpfully to illustrate both certain aspects of the unit’s rationale, and their connection with the 

underlying research questions. As was explained earlier, the researcher upon interrogating the 

transcripts looked for key words and phrases that supported the contention of the unit’s 

effectiveness. An example is provided below, with such phrases highlighted.  

The students’ comments that follow are in response to two case study interview 

questions. The researcher has also chosen here to roughly categorise the responses, classifying 

them as to their association with either a horizontal or a vertical perspective, as defined in the 

last section of the paper, and seen in the representation of Figure 1. The researcher was looking 

for evidence of any apparent consciousness in the student respondents of the mapping in two 

directions, with organisation by coloured themes as an added overlay (referred to in the research 

question as “careful mapping materials”).  

Research Question 1: Can a mathematics education unit based on careful mapping materials 

prepare novice teachers to develop some metacognitive understanding of children’s evolution 

of mathematical concepts? 

Case study Interviewer: The unit aimed to develop a more overall, holistic understanding of the 

way in which pre-algebraic work can support beginning algebra in lower secondary school. 

Please comment on whether or not this was successful for you. How helpful or otherwise did you 

find the ‘scope and sequencing’ documents provided in the unit? 

 

 The horizontal perspective: introducing the colour-coded conceptual areas across 

content for connecting the mathematics 

 

Student 7 (2014): [The lecturer] gave us some big A3 documents. The Scope and 

Sequence Part 1 Pre-Algebra one was basically a big spreadsheet with divisions  [see 

Appendix Fig. 1]. It had a column: verbal and symbolic representation of how to 

represent the maths and also visual and spatial representation. We talked about the 

differences between verbal-symbolic and visual-spatial and how students learn 

differently and how it is good to give students different representations of the maths 

for them. And she had it, once again, highlighted: green for pre-algebra patterning, 

pink for number operations, and blue for equations, equality and inequality, so we 

could see where these concepts fitted in. She had pictures or examples of how to 

represent, for example, addition and subtraction in a verbal-symbolic way or a visual 
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way. Then, in division and multiplication, how to represent it symbolically, visually, 

spatially. Things like that. 

 

 The vertical perspective: scoping and sequencing the Australian Curriculum up 

through the years 

 

Student 2 (2013): I think that after doing the unit, my knowledge of [children’s evolution 

of mathematical concepts] especially has increased. Going back to the holistic approach 

that [the lecturer] had with her documents, it all seemed so clear for the algebra. I know it 

was only one part of the maths Curriculum but suddenly it made sense as to why we 

were teaching them these things in Year 4 and how that was developing them for 

algebra. 

 

Student 7 (2014): I hadn’t looked at the curriculum in this depth and compared each 

year in mathematics in such depth before. So that really did help. You have to read the 

curriculum and analyse it to reach that level of understanding. One thing [the 

lecturer] talked about was how important it is to look at the year before and the year 

after and see where they have come from and where they are going. 

 
The researcher used the thematic analysis seen above to imitate a type of informal yet 

organised coding procedure, noting any relevant correlations between wording and concepts in 

the research and case study questions, with the students’ own words9. 

 It should also be explained at this point that in writing this unit the author was always 

conscious of a certain tension in the underlying theoretical model. While on the one hand the 

mathematics was being explained for the pre-service teachers using a very structured 

conceptualization, on the other hand it was very important that, as classroom teachers, they did 

not therefore assume that their students would also necessarily learn in this very linear and 

organised manner. Current commentary emphasizes the need for all teachers to understand the 

sheer complexity and diversity of the manner and timing of student learning (Deans for Impact, 

2015). It was hoped that, while a greater sense of pedagogical control and some enhancement of 

important PCK had been provided for teachers by these holistic frameworks for Number and 

Algebra – and that this would help them in their organisational planning – it would at the same 

time actually encourage a better disposition towards student-centred, inquiry-based teaching and 

learning. Figure 6 supports this idea: it is an early excerpt from the reflective documentation 

provided each week to students by way of introduction to the consecutive ideas in the 

workshops. The importance of clearly distinguishing between teaching inputs and student 

learning outcomes is a solid theme in the unit. 

 

 
Seeing the Connections and the Big Picture: Uncovering the Hiddenness of Understanding 

 

In response to the first research question (“Can the unit … prepare novice teachers to 

develop some metacognitive understanding of children’s evolution of mathematical concepts?”), 

the researcher also looked for any evidence of the students starting to really know what they 

                                                        
9 The researcher considered the more formal use of the NVivo qualitative analysis package, or its like, but ultimately 
decided on this less structured but more intuitive approach to the analysis. 
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knew. This involved looking for signs of deeper reflection about their actual knowledge, from a 

personal, yet somehow more distanced (meta-), point of view.  

It was clear from the quantitative analysis that their general sense of both what and how 

to teach had improved, and this can be seen in Table 3. (The codes used for the quantitative data 

entry into the SPSS statistics package are also included here so as to link with the later 

discussion concerning Fig. 11.) 
 

Below are some important ideas that were addressed in 

the unit. Please tick the boxes that match best how well 

that you now feel you understand these components or 

concepts in mathematics teaching. 

(badly (1), sometimes well (2), soundly (3), 

excellently (4)) 

Mean rank 

increase on 

Likert scale 

from 1 to 4 

Standard 

deviation 

“What” I need to teach in upper primary maths classes, as 

in content (in) 

0.407 1.0468 

How to become an effective teacher of early algebraic 

ideas (tea) 

0.852 0.907 

How primary mathematics teaching may support early 

secondary mathematics classrooms (sec) 

0.519 0.802 

Table 3.  Mean rank increases from pre-test to post-test responses to three paired sets of questions in the two 

surveys (n=26). 

 
A detectable improvement like this suggests to the researcher that the unit work had 

indeed elicited in the students some degree of metacognition and heightened understanding. 

Moreover, it could be argued that this had occurred because the students’ own understanding of 

what mathematics is, and how it is structured, had been encouraged to surface. Recent 

commentators have argued that teachers usually know more than they realize, and that 

mathematics teacher educators can help this to “emerge” (Davis, 2012; Ma, 1999). Davis (2012) 

has claimed that “teachers' knowledge of mathematics might be productively construed as a 

complex evolving form, a significant dimension of which is tacit knowledge”. Mathematics 

educators often assume that their prepared novice teachers have a solid – or at the very least 

adequate – understanding of such essential teacher skills as seen in the first column of Table 3. 

However, it is argued in this paper that many pre-service teachers need much more consciously 

deliberate assistance in developing their understandings. The documents and the theoretical 

model described in this paper aim to uncover some of that tacit and evolving knowledge, 

wherever it might exist. 

The students in the study – while all competent fourth year degree pre-service students or 

practising in-service teachers, and all comparatively confident in their basic mathematical skills 

(see Tab. 7) – nevertheless consistently demonstrated a marked improvement in both their 

pedagogical and their content understandings. In their comments, all 14 case study interview 

students attributed much of this to their experience in the unit; and, importantly, each of these 

respondents made at least one reference to such as experiences as 

 a sudden awareness or realisation;  

 a brand new big picture overview of the content and the pedagogy;  

 a new sense of the deep connections in the mathematics;  

 and/or a sense of continuity and scope in the mathematics.  
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Again, some highlighting to represent the coding has been added to the actual transcripts 

here, to help to support this claim.  It has been explained that the researcher was looking for 

pertinent key words and indications of changes in disposition, and these connections with the 

original research ideas are exemplified again below. These were categorized by the researcher into 

groups such as the four dot-pointed above, and links were made with data findings from the 

surveys. The quotations below represent a few examples of the corroborative evidence being 

sought. 

Student 2 (2013): I feel that the best thing that I got out of the unit, and the people 

that I have spoken to that it was the best thing for them too, was the holistic approach 

that we suddenly could see why we were teaching kids to count in Year 1 and how 

that actually made a difference when they were learning algebra in Year 10. Because 

those links aren’t always very clear and [the lecturer]’s documents were fabulous for 

that … The holistic approach and how everything seem to just fit: it just made sense 

to me after doing the unit. 

Student 4 (2014):` It was a real eye opener for me.  I didn't realise how early you 

were learning algebra as a student. I didn't realise it went right down to the younger 

years … You could see the progression.  In the first lower primary years you could 

see the basic activity, and then the middle year activity was similar, so you could see 

it getting more advanced as you went along … I didn't really understand that was an 

algebra thing and didn't think much about it, until wow - it really is something that 

they've got to understand when they are young.  They have to understand those 

patterns and how numbers work for them to get the algebra later on.   

Student 6 (2014):  There are areas in the curriculum that I wasn't aware that were 

linked.  They are all interlinked but sometimes you don't realise it. 

Student 10 (2015):  I would say it was successful for me. It gave me awareness.   

Student 12 (retraining primary teacher, 2015):   I teach Kindergarten this year and 

we do lots of patterning work and categorising, but I was not fully aware before the 

unit how this would be useful in later years.  Now I can also see the gradual 

progression across the years and how each concept prepares the way for the next. …  

I was not familiar before the unit as to how the pre-algebraic work linked in with 

algebra in upper years.   

Student 13 (retraining secondary teacher, 2015):  I found this aspect [“developing a 

more overall, holistic understanding”] of the unit very interesting: working [also] in a 

primary school, and looking at my friends’ resources and seeing the pre-algebra in 

their work, but with no direct focus or highlight of it, is now really amazing.  

 
This indication of improved understanding about their own – or about their pupils’ – 

learning of mathematics in the strand is also supported by analysis of the quantitative data, seen 

in Table 4. The overall means of the ranked scores for “mua” and “mui” were 2.96 and 3.00 

respectively, and these shifted up to 3.30 and 3.33, respectively. While, when compared with 

Table 3, the increase of a third of a mean rank score is not large, it still suggests that the students 

have nevertheless generally moved overall as a group from the “soundly” category towards the 

“excellently” one. This can also be seen in Figure 11. 
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Below are some important ideas that were addressed in 

the unit. Please tick the boxes that match best how well 

that you now feel you understand these components or 

concepts in mathematics teaching. 

(badly (1), sometimes well (2), soundly (3), 

excellently (4)) 

Mean rank 

increase on 

Likert scale 

from 1 to 4 

Standard 

deviation 

How to assess or evaluate my own understanding of 

maths concepts (mua) 

0.333 0.092 

How to improve my own understanding of maths 

concepts needed for primary teaching (mui) 

0.333 0.784 

Table 4.  Mean rank increases from pre-test to post-test responses to two more paired sets of questions in the 

two surveys, concerning an understanding of mathematics (n=26). (See Table 2.) 

 

Research Question 2: Can a mathematics education unit based on careful mapping materials prepare novice 

teachers to more clearly relate basic number concepts to early algebraic thinking? 

 

This second research question, and its associated discussion, will be used to further illustrate 

the nature and purpose of the unit content. An earlier section of the paper concerning the unit’s 

context and rationale focused more upon the first half of the unit (Module 1). The second half of the 

unit concerns such issues as the transition from Years 5 and 6 pre-algebra to Years 7 and 8 algebra; 

the likely student misconceptions about pronumerals and equations at this time; and the need for a 

systematic building of algebraic skills. Here the notion of the colour-coded conceptual areas will 

again be demonstrated with regard to both modules, and again with some student comments and 

some activity exemplars. Some materials from Module 2 will also be briefly described.  
 

Module 1: Pre-algebraic building blocks in primary school, and practical activities for understanding the scoping 

and sequencing 

As already seen, one case study question asked students to comment on whether or not they 

felt that the unit had been successful in its professed aim to develop a more overall, holistic 

understanding of the way in which pre-algebraic work can support beginning algebra in lower 

secondary school. Some responses to this research question have been categorized according to 

which of the conceptual areas the students were discussing as they replied. In the case of the last 

student (Student 7), she actually automatically remembered the categories in terms of the colours. 

The highlighted key phrases are in this instance also colour-coded, imitating once more how the 

informal coding analysis was carried out by the researcher. The relevant conceptual areas have been 

added each time for further clarification. 

Student 8 (2015): Yes. Children's evolution of maths is really play-based originally; 

using concrete materials and making and predicting rules ...  So they are moving from 

play-based and concrete materials and this is what I notice in patterns, then moving - 

taking away I guess some of those concrete materials and focusing then more on what is 

that pattern, can we name the pattern, does it work any other way, ... and then all the way 

through to formulating an actual rule using pronumerals and things like that to provide 

the pattern. (Patterns and sequences for algebra) 

Student 4 (2014): When they are younger you start by doing your 1 + 1, 2 -1 kind of 

thing.  … The relationship between adding and subtracting, quite young; and then moving 

onto the relationship between multiplication and division.  You understand that base 
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before going into algebra.  Because if you don't understand the difference between them 

and how they are so similar in what they are, then it is very hard for them to establish it 

later.  (Inverse operations and number facts) 

Student 5 (2014):  [The unit] emphasised the importance of teaching those pre-algebraic 

ideas in the early years so they could establish that foundation knowledge which they 

could then build on later years of schooling. For example, teaching children the equals 

sign. Say 5 rather 2 +3 = 5 can also be 2+3 can also be 4 + 1 and those sorts of things. So 

that your answers don't just have to be just one set answer [on the right-hand-side] for 

everything.(The meaning of equality) 

Student 4 (2014): Having 2 + 2 =  and then having the kids figure out that it can be 3 + 1 

as well. Like it's the same on both sides.  …  I didn't really understand that was an algebra 

thing and didn't think much about it, until wow - it really is something that they've got to 

understand when they are young. (The meaning of equality) 

Student 3 (2013): …If you are doing patterning, obviously you start simple and it 

becomes increasingly more challenging for them, but it’s when they understand the 

purpose of filling that blank spot, that is what they have to understand. That 

understanding will carry them further into understanding why we put the letters in. 

(Using blank unknowns before letters) 

Student 14 (retraining primary teacher, 2015):  Once I saw the class demonstration for 

solving a linear equation and paying attention to inverse operations I could see why the 

pre-algebraic pattern work was so important and how it transitioned seamlessly from back 

tracking to balancing. (Patterns, operations, and equivalence)  

Student 7 (2014): There was a table [see Fig. 7 below] that [the lecturer] had highlighted. 

She had pre-algebraic number patterning in green, operations in pink, equations in blue. It 

just helped us to look at it in a different way and compare. For example, number 

patterning between Year 4 and Year 5 and what’s different. This really helped a lot in 

seeing the evolution. I hadn’t looked at the Curriculum in this depth and compared each 

year in mathematics in such depth before. … You really have to read the Curriculum and 

analyse it to reach that level of understanding. (Patterns, operations, and equivalence) 



Australian Journal of Teacher Education 

 Vol 41, 6, June 2016  144 

 

 
Figure 7. Two sections of a document exemplifying the conceptual areas with activity prompts, for 

Year Foundation to Year 5. This is an example of the horizontal perspective as discussed. 
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Module 2: Transition from pre-algebra to secondary algebra: moving from the concrete to the abstract language 

of algebra  

 

The second module, which focuses on the early secondary years, builds upon the ideas 

established in the first module. For this purpose, the author has summarized the well-documented 

common early algebraic misconceptions (Booth, 1984; Clement, 1982; Kieran, 1981; Perso, 

1991: see Fig. 8), which were briefly referred to in the review of the literature. In unit work, 

these misconceptions are closely examined, at the same time refreshing or establishing the pre-

service and in-service teachers’ own algebraic understandings and skills. The second module 

engages less in the scoping and sequencing of pre-algebraic and algebraic ideas, and focuses 

more now on summarising the desirable learning outcomes that may be achieved, through 

classroom attention to both the misconceptions and a carefully sequenced teaching of algebraic 

manipulative skills (see Fig. 8). Wherever possible, this thinking is linked back to the discussions 

about pre-algebra in the first module, so as to keep students focused upon the primary school 

number concepts that are so fundamental to early algebra. One such example of this linking of 

the two modules is seen in Figure 9. 

 

 
Figure 8. An example of a “summarizing” document used in Module 2: linking the notions of desirable 

learning outcomes, misconceptions, and some fundamental manipulative skills for transition algebra. 
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Figure 9. Two PowerPoint slides from a Module 2 workshop: analysing a common algebra misconception, 

and relating this back to ideas in Module 1. 

 
Some further case study comments concerning the second module are included here, and 

again they suggest some general overall success of this approach. Greeted with particular 

enthusiasm by the students was the theme of common student misconceptions in lower 

secondary school, concerning the introduction of the use of letters and the notion of algebraic 

equations. (In the following quotations the extra bolding is not added, but the researcher’s 

methods for interrogating the thinking behind the statements was carried out in the same manner 

as before.) 

Student 3 (2013): Obviously some more defined skills as far as algebra goes are like 

when we are to introduce the lettering and not to use … like one thing [the lecturer] said 

that can be confusing, is if we are talking about chairs and tables and using the letter c 

and t, which they sort of relate to the object as opposed to relating to the number that it 

should be.  

Complete this “equality” statement. Then 
think of two more of your own, one using a 
fraction or a decimal if possible.  
 

                   12  + __  =  5  +  __    

“I can’t ever really  
FINISH: it goes on forever, as 

long as the numbers add up 

to 30!”  

You can introduce the idea of 
“variables” to students by 
asking for all possible missing 
values in equality statements 
like these: 
 
      ___  + ___   =   30 

 

 
 

 
 “I can’t ever really  

FINISH: it goes on 

forever, with the right 

missing number always 

7 more than the left 

missing number!” 
 

Then they are more likely to accept the laws of algebra. 

Literal equivalence 

Workshop 2.2 

How to help with “literal 

equivalence” problems using a 

verbal/symbolic approach 

28 

    How to help with “literal equivalence” problems 

Workshop 2.2 

32 

Pre-algebra for algebra 

See Workshop 1.3. 

Think back to Module 1 also. 

Literal equivalence 
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Student 4 (2014):  A turning point for me in the unit was actually the scope and sequence 

and how things join together, and then I think one of the major points was learning about 

the misconceptions that kids have, and then interpreting how they made that mistake and 

then how to fix that problem. Because, you can teach them and that is fine, but then you 

have got to figure out how they have done it wrong. I think that was one of the bigger 

things that this unit did and a lot of other [mathematics education] units didn't.  

Student 13 (retraining secondary teacher, 2015): I truly believe all the misconceptions 

[the lecturer] talked about, in the sense that I saw [in my colleagues’ classrooms] the 

completed sheets using shapes et cetera in the place of ‘x’, but knew that if we transition 

that to an actual ‘x’, the [primary] student would not have been as successful – you could 

just tell, there was confidence with the shapes but decreased confidence when algebra 

was mentioned. 

The researcher’s claim that the students felt generally more enabled in terms of their PCK 

is also supported once more by the quantitative data (see Tab. 5); this analysis again relied on 

any evidence of a positive shift in the mean rank between tests.  (This also serves as an 

appropriate introduction to the next section of the paper, in which evidence of improved 

professional confidence and sense of self-efficacy will be discussed.) The mean rank for “How to 

become an effective teacher of early algebraic ideas” shifted up by almost a whole unit on the 

scale. 

 

Below are some important ideas that were addressed in the 

unit. Please tick the boxes that match best how well that you 

now feel you understand these components or concepts in 

mathematics teaching. 

(badly (1), sometimes well (2), soundly (3), excellently (4)) 

Mean rank 

increase on 

Likert scale 

from 1 to 4 

Standard 

deviation 

How to become an effective teacher of early algebraic ideas 

(tea) 
0.852 0.907 

How primary mathematics teaching may support early 

secondary mathematics classrooms (sec) 
0.519 0.802 

Table 5.  Mean rank increases from pre-test to post-test responses to two paired sets of questions in the two 

surveys (n=26). (Also see Tabs. 3 and 4.) 
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Code Concept/component 

ac The Number and Algebra strand in the Australian Curriculum 

eat   How to plan and write an early algebra learning task 

top How to plan comprehensively a sequence of lessons in Number and Algebra 

out   How I can judge what students have learned and can understand in a mathematics classroom 

num   Basic concepts (to Year 7) in number skills and patterns 

alg   Basic concepts (to Year 7) in pre-algebra and algebra 

mua   How to assess or evaluate my own understanding of maths concepts 

mui   How to improve my own understanding of maths concepts needed for primary teaching 

in    “What” I need to teach in upper primary maths classes, as in content 

tea   How to become an effective teacher of early algebraic ideas 

sec   How primary mathematics teaching may support early secondary mathematics classrooms 

Figure 11. A comparative column chart, with a key explaining codes: illustrating the changes from pre-test to 

post-test in regard to the paired question: “Please tick the boxes that match best how well that you now feel 

you understand these components or concepts in mathematics teaching. (badly (1), sometimes well (2), soundly 

(3), excellently (4))” Largest increases are highlighted in grey in the key. 

 

As can be seen in both Table 5 and Figure 11, two of the stronger overall positive shifts in the 

means of ranked responses occurred for the questions coded “eat” (How to plan and write an early 

algebra learning task) and “tea” (How to become an effective teacher of early algebraic ideas). This was an 

encouraging finding when associated with that second research question (Can a mathematics education 

unit based on careful mapping materials prepare novice teachers to more clearly relate basic number 

concepts to early algebraic thinking?). 

 

Research Question 3: Can a mathematics education unit based on careful mapping materials prepare novice 

teachers to develop confidence and self-efficacy as teachers of mathematics? 

 

This last part of the paper reports on any self-observed changes in the professional 

confidence and sense of self-efficacy in the respondents; and finally examines and reflects on 

some analysis of their attitudes towards classroom mathematics. 
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Confidence and Self-efficacy 

 

According to the quantitative data from this study, the students’ overall professional 

confidence also generally improved, and their sense of self-efficacy improved slightly also. This 

is seen in Table 6.  

 

Please select answers to the following questions by placing a 

tick in the appropriate box:  

 (strongly disagree (1), disagree (2), unsure (3), agree (4), 

strongly agree (5) 

Mean rank 

increase on 

Likert scale from 

1 to 5 

Standard 

deviation 

I feel confident when teaching maths in an upper primary (or 

Year 7) classroom.  

0.407 0.572 

I can teach upper primary (or Year 7) mathematics effectively 

(with good student learning outcomes). 

0.296 0.609 

Table 6.  Mean rank increases from pre-test to post-test responses to two paired sets of questions in the two 

surveys (n=26). (Also see Tabs. 2, 3 and 4.) 

It needs to be noted also that none of the respondents reported low self-confidence at the 

beginning of the unit, when mostly primary mathematics content was being considered. This is 

probably to be expected from the demographics of each of the cohorts involved (see Tab. 1). 

Also evident was their comparatively different responses to the extra knowledge about number 

that they felt that they had gained in the unit, as opposed to pre-algebra and algebra.  

 

Below are some important ideas that were addressed in the unit. 

Please tick the boxes that match best how well that you now feel 

you understand these components or concepts in mathematics 

teaching. 

(badly (1), sometimes well (2), soundly (3), excellently (4)) 

Mean rank 

increase on 

Likert scale 

from 1 to 4 

Standard 

deviation 

Basic concepts (to Year 7) in number skills and patterns [num] 0.111 0.751 

Basic concepts (to Year 7) in pre-algebra and algebra [alg] 0.333 0.877 

Table 7.  Mean rank increases from pre-test to post-test responses to two paired sets of questions in the two 

surveys (n=26). (See Tabs. 2 to 5.) 

Figure 11 shows that the mean rank for the responses to the first question in Table 7, 

concerning their confidence with number concepts in the primary years, already lay between 

“soundly” and “excellently” (3.19 pre-test and 3.30 post-test, on a 4-point Likert scale). The 

mean rank for the algebra item nevertheless also only showed a move from 3.00 pre-test to 3.33 

post-test. While anecdotally most case study respondents referred to a general increase in 

professional effectiveness and confidence, it needs to be acknowledged that all students in the 

study group were starting already from a fairly firm base in their PCK concerning early number 

concepts, at the primary teaching level at least.   

The researcher also noted with interest that the reported increase in self-confidence was 

generally more apparent in 2014 and 2015, after she had responded to an obvious fault in the 

2013 version of the unit by including many more teaching examples and activities. 
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Student 2 (2013): Yeah I think so [that my self-efficacy has improved]. Probably not as 

much as I was hoping, I don’t feel as I got as many ideas and activities. I don’t feel as 

prepared as what I would have liked to after doing a full unit on algebra. The curriculum 

side of things and the holistic view of where everything fits in the curriculum, why we 

teach things in year 1, year 3 through, was great, but the specific things of actually how to 

teach it, I don’t feel as prepared as I thought I would after a full unit. 

Further case study responses to the questions below indicate one likely source of the 

renewed confidence: a general sense of a stronger ability to plan and to sequentially link 

concepts. Phrases that support this claim are seen in bold in the transcripts below, and some 

bolding to show connections with the research and case study questions is offered again, as 

before.  

Research Question 1: Can a mathematics education unit based on careful mapping materials prepare 

novice teachers to develop confidence and self-efficacy as teachers of mathematics? 

Case study interviewer: Has your professional confidence increased due to participation in the unit? 

Has your professional self-efficacy increased due to participation in the unit?” 

Student 1 (2013): Okay, so professional confidence … Definitely, I have more of an idea 

of how to plan that and what to use and what resources to use, and how to stop and 

plough back if they have those misconceptions there. Identifying those misconceptions 

is a big thing that we got from this unit, so that would definitely affect our professional 

practice. 

Student 6 (2014): I have felt I have gained extensive knowledge in pre-algebra 

concepts and I am really looking forward to being able to implement these in the 

classroom.  For me it is about knowing about what I need to teach confidently and 

imparting this onto my students. I think this unit has helped significantly… The 

documents provided to us, the lectures, and going through the [Australian] Curriculum …  

The Curriculum is in front of us, but being able to unpack it and know exactly what 

achievement standards are required, and so forth, it really helps to prepare. My pre-

confidence would be a 4 and now I feel up there, maybe being a 9. 

Student 8 (2015):  Most definitely yes … Many teachers get lost.  They don't really have 

a good idea of algebra themselves, so when they come to try and teach it they like... oh I 

don't know. Whereas this unit really gave - it increased your own algebraic thinking, so 

then you'd be confident being able to translate that into teaching.  

Student 12 (retraining primary teacher, 2015): Before the unit I wondered whether I 

could teach mathematics at this level and now I know I have the tools to successfully 

teach it, although I feel a lot of previous planning would be required in the initial stages. 

Student 14 (retraining primary teacher, 2015):  Yes it has. I can hold a conversation 

with my peers regarding the pedagogy. I now just need to familiarise myself with Year 

10 algebra and vocabulary. 

 
 

Beliefs about Mathematics 

 

One last interesting aspect of the research will be briefly reflected upon here. The 

students were also asked to complete a second set of pre- and post-test surveys that attempted to 

explore their general feelings about classroom mathematics (Swan, 2005). Swan’s diagnostic 
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questionnaire interrogates the idea of three preferred “orientations” for teaching – namely 

transmission, discovery, and connectionist – first discussed by Askew et al. (1997), as mentioned 

in the literature review. Teacher beliefs and attitudes are notoriously difficult to influence in any 

significant way, as the research has shown (Beswick, 2005, 2006; Grootenboer, 2008; Goldin, 

Rosken, & Torner, 2009; Hurrell, 2013). This was largely seen to be true in this study also.  

When the mean distributions of student beliefs were calculated, expressed as a percentage 

breakdown of three items, the respondents were relatively evenly balanced in their preferences 

for the three orientations, but with a somewhat stronger preference for the transmission mode of 

teaching and learning. There was very little change to this seen in the post-test, although the 

connectionist orientation percentages gained on average by 2%, and those for the discovery and 

transmission orientations lost 1% each. This can be seen in Table 8 and Figure 12 below.  
 

Teaching 

orientation  
 “Mathematics is …” 

Transmission A body of knowledge and standard procedures; a set of universal truths and rules, which need to 

be conveyed to students  

Discovery A creative subject in which the teacher should take a facilitating role, allowing students to 

create their own concepts and methods  

Connectionist An interconnected body of ideas which the teacher and the students create together through 

discussion  

Table 8.  Descriptions for the “orientations” associated with students’ beliefs about mathematics (Swan, 2005) 

 

 
 

Figure 12. Differences in the overall means of the percentage breakdown scores for Mathematics, attributed 

by students before and after unit participation. (“Give each of the three statements a percentage (so that the 

sum of the three percentages adds to 100%.”) 

 

Further analysis, seen in Table 9, supports the finding of a very slight change, with the 

overall mean of the percentages rising by just 2.17% for the connectionist orientation and 

dropping only very slightly for the discovery and transmission orientations. In support of this, 

Paired t-tests on these same means are all quite non-significant (p=0.56, p=0.69 and p=0.27). 
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Teaching 

orientation  

 

Pre- and post-test differences (Swan, 2005) 

 “Mathematics is …” 

Mean of 

percentage 

differences 

Standard 

deviation 

of 

percentage 

differences 

p-value 

(Paired 

Student-t 

test) 

Transmission A body of knowledge and standard 

procedures; a set of universal truths and 

rules, which need to be conveyed to students 

[MT2 – MT1] 

-1.33 11.392 0.556 

Discovery A creative subject in which the teacher 

should take a facilitating role, allowing 

students to create their own concepts and 

methods [MD2 – MD1] 

-0.95 11.821 0.685 

Connectionist An interconnected body of ideas which the 

teacher and the students create together 

through discussion [MD2 – MD1] 

2.17 9.863 0.274 

Table 9.  Mean rank differences (decreases or increases, (% post-test minus % pre-test)) in pre-test to post-test 

percentage attribution responses to two paired sets of questions in the two surveys. This is again also analysed 

using the Paired Student t-test (n=26). 

 

This result raised an immediate question. Can it be assumed that, in a general sense, this 

particular small group of pre-service and in-service teachers has firmly maintained their original 

beliefs? In other words, were they actually relatively unaffected by a unit offering that has 

consistently argued for the need to recognize the connectedness of mathematics and the need for 

student inquiry? It would at first indeed appear so; and also that the perceived usefulness of 

inquiry-based learning has dropped slightly in the opinions of the group, rather than increasing 

with the creative approach intended in the unit.  

However, it is more revealing to look at this on a case-by-case basis across all 26 

respondents to the quantitative surveys. The researcher was prompted to do this by the relatively 

large standard deviations around these very small mean changes, and Figure 13 provides some 

interesting extra information about the individuals and their responses. The larger variability of 

the actual individual movements in the percentage weightings is now seen. For example, 

Respondents 2*, 4* and 11* have each shifted by 10% or even 20% from transmission to 

connectionism; and Respondent 18 (Student 7 in the case study) by 20% overall to discovery 

learning and connectionism. However, by contrast, Respondents 6, 9 (Students 1 and 3 in the 

case studies), 4* and 15* have moved 20% overall away from the more student-centred 

orientations towards a more traditional transmission one. It appears that the group was not so 

homogenous after all, and only 6 of the 26 individuals (Respondents 3, 5, 10*, 12*, 13* and 22*) 

have actually maintained exactly the same percentage breakdown in the post-test as in the pre-

test, thus appearing to have not changed even slightly in regard to beliefs about classroom 

mathematics. (Students 2 and 4 in the case study groups are amongst these.)  

 

                                                        
* These are students not involved in the case study interviews, for the reader’s interest. 
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Figure 13. Bar charts showing individual shifts of all student percentage breakdown scores, before and after 

unit participation. (“Give each of the three statements a percentage (so that the sum of the three percentages 

adds to 100%.”) 

 

This further analysis then posed an associated question for the researcher: was the 

emphasis in the unit upon the importance of inquiry-based, deep learning in these transition years 

in the strand unheeded by some students, after all? Did, perhaps, the highly structured nature of 

the documents and of the content – even with the added sense of control and confidence that this 

appeared to afford students (as revealed anecdotally) – actually move some of them away from 

more creative teaching, rather than moving them towards it?  

The students’ future classroom teaching practices can only be guessed at, but one 

comforting statistic did emerge from the quantitative data that indicated that this might not be 

quite the case. The students appeared to have moved significantly in their self-confidence and 

sense of self-efficacy when it came to enacting and understanding problem solving scenarios 

with their own students. Table 10 evinces this claim. 
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Please tick the boxes that match best how well that you now feel you 

understand this component … in mathematics teaching: 

 (badly (1), sometimes well (2), soundly (3), excellently (4)) 

Mean rank 

increase  on 

Likert scale 

from 1 to 4 

Standard 

deviation 

How to assess students’ mathematical problem-solving skills (ps) 0.519 1.014 

Table 10.  Mean rank increases from pre-test to post-test responses to a paired sets of questions in the two 

surveys (n=26). (Also see Tables 2 to 5.) 

 

One case study participant also had this to say in response to the question: “Has your 

professional self-efficacy increased due to participation in the unit?” 

Student 13 (retraining secondary teacher, 2015):  Yes. I am more confident of what my 

classes should be able to do and how to get them doing it, I am more adventurous in the 

classroom and more confident in discussing and following discussion of the direction a 

course/class/topic should follow. 

The researcher hopes that the confidence and knowledge gained by this small cohort of 

students has, at least to some degree, offset any possible tendencies to equate the structured 

nature of the unit’s teaching model, with the much more fluid nature of mathematics itself, or of 

their own students’ learning of mathematics.  

 

 

Conclusion 

 

The rationale for the unit described in this paper derives from the researcher’s belief that 

providing teachers with some kind of synthesised and illuminating interpretative model for the 

mandated Australian Curriculum may actually allow them more freedom to develop their lessons 

in an open and inquiring way, as well as in a better informed one. Without such supports as 

provided by overviews as the ACCR structure and its summative documents, and without a rich 

variety of pedagogical exemplars, less experienced teachers are more likely to resort to a 

fragmented and purely linear view of mathematics, or worse still, an un-informed, more 

textbook-driven one. A deeper and more comprehensive understanding of the Australian 

Curriculum for mathematics is very much needed by many teachers in both primary and 

secondary schools. 

Just as a sense of balance is needed in the strategic use of those well-researched classroom 

teaching orientations, the same is no doubt true for mathematics education programs for pre-

service teachers. Teaching how to teach needs to be modelled at every point. As structured as the 

discipline of mathematics may be described to be, it has been argued in this paper that even more 

structure and guidance is needed to support improved teacher PCK. It has been suggested that the 

guidance needed should be one that attempts to enable or unearth teachers’ sense of 

mathematical connections (Ormond, 2012a). Perhaps there is something about a minute analysis 

of the scoping and sequencing of a mathematics strand that can liberate novice teachers to 

experiment with inquiry processes – knowing that a sound understanding of some sort of master 

plan will mean that they can diverge a little without getting lost.  

Any research conclusions in this small study are necessarily somewhat limited by the small 

sample size, and by the more subjective interpretive analysis of a researcher who was more 

focused upon reflection and interrogation of some pedagogical themes, than upon gathering 

inferential evidence. Further planned research into these ideas may provide more evidence about 

the ideas discussed here. It is intended that such future research will look at a much larger sample 



Australian Journal of Teacher Education 

 Vol 41, 6, June 2016  155 

than seen in this three-year pilot, and interrogate more closely, using a broader and better defined 

scale, just how any positive changes may be encouraged by similar approaches. The contention 

of the paper, however, that teaching mathematics in isolated pockets does not work effectively 

for classroom mathematics students, is unchanged. Experienced teachers have the necessary 

cohesive vision to avoid this tendency in their teaching, but novice teachers almost inevitably do 

not.  
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Appendix 
 

1. Please describe your feelings about mathematics and 

mathematics teaching, relating them where relevant to your 

experience in the unit. Have these feelings changed or 
remained about the same? 

4. Has your professional confidence increased due to 

participation in the unit? 

2. The unit aimed to develop a more overall, holistic 

understanding of the way in which pre-algebraic work can 

support beginning algebra in lower secondary school. Please 
comment on whether or not this was successful for you. 

5. Has your professional self-efficacy increased due to 

participation in the unit? 

3. Comment on how you see children’s evolution of 

mathematical concepts in number and number patterns, 
over the latter half of primary school especially, and relate this 

if relevant to your experience in the unit. 

6. Please describe your current understanding of the 

cognitive demands in mathematics as students move from 
primary to secondary school. 

Appendix Table 1. Case study questions for the study. 
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Appendix Figure 1. A PowerPoint slide illustrating the ACCR conceptual areas and their usefulness in 

effective teaching practice. This provides a clearer image to help readers better understand Figure 6 in the 

body of the paper. 



Australian Journal of Teacher Education 

 Vol 41, 6, June 2016  162 

 
Appendix Figure 2. The Years F to 10 Australian Curriculum Number and Algebra Achievement Standards 

(abridged) document. This allows students to think about the three “conceptual areas” for the strand both as 

isolated ideas in each Standards excerpt, as well as overlapping and related ones. An activity required the 

students to try highlighting these categories first for themselves.  
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